Category Archives: Editorial

Duty of Scientists

by David Mason-Jones

At what point does it become the moral and legal duty for scientists to speak out when an issue involving the integrity of science arises?  This challenge has always existed but may be presenting itself in in a new light over the issue of whether sea surface temperatures near the Great Barrier Reef are rapidly rising.

It was this challenging question that came strongly to mind when I was made aware of the two graphs shown below. The first graph is of the raw data from a sensor at the Australian Institute of Marine Science (AIMS) wharf at Cape Ferguson, not far from Townsville, Queensland. To the naked eye, and on an expanded scale, it definitely fails to show any rapid rise over the 29.5 years of observations.

Source: National Tidal Centre. Bureau of Meteorology. 07 May 2021. Australia

Using basic statistical methods, if one digs deeper into the table of data supporting the graph the answer comes back the same – ‘No.’

After reviewing the Cape Ferguson data, natural resources research scientist Bill Johnston found a connection between sea surface temperature measured by the tide gauge and maximum temperature measured on-land but no evidence of a trend uniquely due to warming of ocean waters in the vicinity of Cape Ferguson.  

‘If the numbers at Cape Ferguson are supposed to constitute part of the evidence for rapidly increasing sea surface temperatures in the vicinity of the GBR, they just don’t stack up,’ says Dr Johnston. ‘If a rapid rise exists, we are going to have to look much further afield for the compelling evidence than just a wharf near the shore of the mainland.

‘And if we go looking for the real evidence, we are going to have to find some obvious and sustained increases elsewhere in the Reef and its lagoon to compensate for the absence of an ocean-related trend at Cape Ferguson,’ he says.

The second graph shows Johnston’s work in ‘de-seasoning’ the annual swings in measured temperature due to the difference in the Sun’s apparent position north and south of the Equator. When the sun appears to be directly overhead, it is hotter, the days are longer and the water near the surface is warmer. When the angle of the Earth’s tilt makes the Sun appear to move north of the Equator, the reverse is the case – less solar heat, shorter days and cooler water. The annual swing in sea surface temperature is constant and not attributable in any way to changes in the climate. 

Source: Scientist Dr. Bill Johnston

Dr Johnston’s analysis of the de-seasoned data shows two clusters of warmer temperature (1998 and 2018) but no indication that sea surface temperatures are increasing rapidly or likely to increase in the future.   

The commonly held view that sea temperatures are rising in the GBR is widespread and the message is deeply entrenched, so much so that the topic is an almost guaranteed dinner-party-wrecker if seriously disputed by any of the guests.  

But is it true?

The problem for our dinner party is that, like it or not, a clear-headed review of the observed sea surface temperatures in the GBR shows no rising trend in the data – at least not at Cape Ferguson. Most importantly, there is no such phenomenon in the data that would justify the use of the word ‘rapidly’.

So what is the duty of an ethical scientist at the dinner party in this situation – to wreck the party or just to stay quiet and avoid rocking the boat? What is the scientist’s obligation to draw people’s attention to the discrepancy between belief and reality? This is possibly one of the oldest challenges in science.

‘At Cape Ferguson, there is a huge disparity between what people – and scientists – seem to believe and what the data says,’ says Johnston. ‘True scientists should not sit back and allow this misconception to take hold in the public mind as the truth.’

While Cape Ferguson is a single instance, other sites around the GBR show the same inconvenient result. The AIMS site at Thursday Island, off the tip of Cape York (May 1998 to February 2019); Arlington Reef off Cairns (April 1996 to February 2020); Seaforth Island off Proserpine (July 2005 to February 2021) and Square Rocks off Yepoon show no discernible warming trend. It seems to be the truth that over-hyped talk of rapid rise in sea surface temperature is belief-based, not fact based.   

Someone of influence and repute needs to start blowing the whistle on this.   

The data for Cape Ferguson is available from the Australian Bureau of Meteorology (BOM) website ( http://www.bom.gov.au/oceanography/projects/abslmp/data/monthly.shtml ). The site is one of National Tide Centre’s Australian Baseline Sea Level Monitoring Project (ABSLMP), a unit within BOM. ABSLM monitors seal level and sea surface temperatures at 16 sites around Australia and data can be viewed as PDF graphs and as tables. Please have a look for yourself. I stress this request, please look for yourself and don’t just take my word for it. You just may be shocked by the disparity between the general belief and the reality revealed by the data. Please also bear in mind that the data you will find is not the work of some hair-brained contrarian sitting at a computer late at night, blogging away madly and making it all up. It is the data from the Australian Baseline Sea Level Monitoring Project (ABSLMP).

I will deal with more of this data in greater detail in subsequent articles to be published on http://www.bomwatch.com.au   

For the moment however, let me just focus on the Cape Ferguson site at the AIMS wharf which is part of the baseline monitoring program referred to above. While AIMS is not directly responsible for the collection of the data (it is done automatically) the sensor is co-located at its property and, given the marine science role of AIMS, one might expect that the organisation might have more than a passing interest in the integrity of the Cape Ferguson data.

It’s all a bit disheartening. Very few individuals appear ready to acknowledge that they may be under a moral or legal obligation to speak out about the chasm between belief and empirical data when it comes to sea surface temperatures near the Reef.   

There is a further question that opens out from this. At what point do we expand the idea of a personal moral or legal duty of an individual to the wider scope of the legal duty of a corporate entity such as a university or publicly funded research organisation? Not only is it intolerable that individual scientists may avoid their moral and legal duty, it is also intolerable when a corporate entity does the same.

Research organisations we have come to trust cannot be granted the luxury of legal immunity when they make claims that cannot be substantiated. They cannot choose to remain silent when challenged by obvious discrepancies.     

I opened this essay by posing the question about when a scientist’s personal moral or legal duty to speak-out clicks in. The disheartening thing is that this point of law is not yet clearly determined and the law seems more porous on this subject than it does in, say, the commercial world where an individual makes a false or misleading statement about the contents of a prospectus when promoting that prospectus. Similarly, a company – a corporate legal entity – faces severe legal sanction if it issues a false or misleading prospectus.

Let’s hope the persistence of scientists like Dr Bill Johnston gives heart to others to speak out when they see instances like Cape Ferguson. Our systems of quality control in science need teeth, not more funding for flawed science based on foundations of wrong, or shaky, data.         

<end notes>

David Mason-Jones is a freelance journalist of many years’ experience. He has researched and written extensively on environmental issues. www.journalist.com.au or  publisher@bomwatch.com.au

Dr Bill Johnston is a former NSW Department of Natural Resources senior research scientist and former weather observer. scientist@bomwatch.com.au

To view the graphs and tables of the ABSLMP data in full visit http://www.bom.gov.au/oceanography/projects/abslmp/data/monthly.shtml  

For more information about climate of the GBR visit http://www.bomwatch.com.au 

On Peer Review

by David Mason-Jones

A limited tool at best – never a proof  

Many people may have a mental image of peer review as a process where white-coated scientists re-run the experiment in laboratories or repeat the research out in the real world.

After this they have long meetings in board rooms to discuss the paper and, finally, they confirm that the research and results described in the paper are rock solid and beyond doubt. They then approve the paper for publication in a journal.

The belief in peer review as proof of scientific fact becomes conflated with concepts like truth, beyond doubt, trustworthy, reliable, beyond dispute, the gold standard of science and so on. Sadly, for people who hold these beliefs, peer review is nothing of the sort. 

So, what is peer review?

Peer review is a step in the publishing process where an editor/publisher attempts to weed out papers that are spurious or obviously in error. It is a process where papers are vetted to ensure they present a cogent argument based on recognized scientific analysis. 

At a superficial level peer review can be as simple as a spelling or syntax check, that scientific terms are correctly used and that the paper reads okay. This might sound lightweight for a journal at the forefront of scientific knowledge but presentation is important. 

This part of the process can also include checks on the visual aids used in the paper such as photographs, diagrams, graphs and tables. Are these clear and understandable? Do they support the points made in the body of the paper? Are they relevant or do they just look good?

At a deeper level the peer review process addresses issues like: ‘Is the hypothesis sound and relevant and is it supported by the Introduction?’ Is the logic of the paper sound? Are the methods sound? Do they relate to the hypothesis? Is the argument well constructed, brief and to the point? Is there anything missing in the chain of logic? Does the paper present new information or does it support existing knowledge?

Peer reviewers are appointed by the editor and most scientific journals are quite specialized as to the field of science upon which they are writing, so reviewers need to confirm whether the paper satisfies the scape of the journal.

Given that there are many different journals and editors, it becomes likely across the spectrum that there can be different standards and requirements as to what the editors and publishers require. It is fair to say the term ‘peer review’ has taken on a life of its own, free from real meaning and certainly not a re-running of an experiment.

Not a proof

Peer review is not intended as proof and yet peer review is trotted out all the time as the gold standard of scientific proof.

The ‘proof’ or disproof of the findings of the paper comes when it is put under the blowtorch of criticism of the wider scientific community and, most importantly, when it is put under the blowtorch of Test by Replication. 

Peer reviewers are not claiming they have done the experiment again or made the same observations or done the same maths and obtained the same results. They are not claiming to have replicated the research. This is a really important point.

Behind closed doors

There can be an area of grey when it comes to the transparency of the peer review process because the peer reviewers can choose to do their work anonymously. This conflicts with a characteristic of the scientific method which requires that science be open.

It is true that this anonymity aspect is not always the case and reviewers can choose to be anonymous or open. Despite this discretion, it is common for peer the peer review process to be dome behind closed doors. Where this happens, the peer reviewers are simply put in a position where their background, track record, expertise and even their strongly held opinions cannot openly be taken into account. The peer reviewer may simply be prejudiced against the thesis of the proponent and, by exercising this prejudice discretely and anonymously, can stymie the publication of a paper that is otherwise a valuable contribution.  

Usually a paper would have two or three peer reviewers and the writer – the proponent – has the right to contest the comments coming back to the editor from the reviewers. But where the reviewers remain anonymous, it just makes an open scientific discussion harder. 

Conflating peer review with proof – an example

An example of the conflation of peer review with proof came with an ABC Television Media Watch segment some years ago. Not only were the two concepts conflated, but the high profile Reef scientist, Ove Hoegh-Guldberg, Ph.D., Professor of Marine Science, University of Queensland, gave a ludicrous analogy of the credibility of peer review.

      Hoegh-Guldberg was quoted as asserting that the idea that reef science can’t be trusted because it’s only peer reviewed, was, ‘… just ridiculous.’ 

Hoegh-Guldberg was then cited as saying that peer review was, ‘… the same process we use when we’re studying aeronautics, which produces planes that we travel on …’

On first hearing this it sounds like a compelling analogy. But think it through. There is no way an aeronautics engineer would accept something say, a new alloy for inclusion in an aircraft design, on the basis of peer review alone. The engineers would go for the higher standard of replicability. The alloy would be tested to destruction many times in a process of replication over and again to see if it stood up to the claims made about it.

The engineers would depend on three things; replication, replication, replication.

Replication, not peer review, would be the key to the proof.

Weeding out fraud, spoofing, dumb errors

In its quality control aspect, peer review might be able to weed out totally spurious papers, rants by complete cranks, fraudulent works, mathematical incompetents, mischievous papers by tricksters and even April Fools’ Day jokes. It is not, however, even guaranteed to perform that role very well.   

Vulnerable to spoofing

A recent hoax involving peer review was first reported in ‘The Times’ newspaper in the UK and subsequently reprinted in ‘The Australian’ newspaper on 9th January, 2019. The journalist, Rhys Blakely, is The Times science correspondent and the article in The Australian is headlined, ’Academic faces sack over hoax that fooled academic journals.’ The article outlined the plight of Peter Broghossian, an Associate Professor of Philosophy at Portland State University in Oregon, USA, who is facing the university’s censure over his role in the well-intentioned hoax.

Led by Broghossian, several academic wags spoofed the peer review process and wrote 20 spurious papers, all of which had the trappings of serious scientific papers. They submitted them to academic journals for publication. The papers were meaningless rubbish but that is not the way the peer reviewers saw it. Of the 20 bogus papers put out to peer review, seven were accepted for publication – that is 35% of the total!

Dr. Broghossian and his colleagues were shocked by the ease with which the papers were accepted. Although it may have been a hoax, it confirmed peer review is not the robust gatekeeper of truth that many people believe.

Another example 

This involves papers written by research student, Oona Lonnstedt, who conducted research at James Cook University and gained a Ph.D. at the Australian Research Council Centre of Excellence for Coral Reef Studies. Lonnstedt then went back to Sweden where she did the further research which has tripped her up.

The paper which set the suspicions running was at Uppsala, Sweden. It was about the effect on small fish of ingesting ocean micro plastics and how this affected the ability of the fish to grow, hunt and survive. The paper was published in the high profile journal ‘Science’ in 2016, and was challenged by two concerned scientists within a week of publication. The challenge came after the paper had been peer review.

Lonnstedt’s paper has been examined by Uppsala University and been retracted. The report of the University’s Board for Investigation of Misconduct in Research was published in December, 2017, and found that Lonnstedt had fabricated data. Both Lonnstedt and her supervisor were found to have engaged in research malpractice.

Another body in Sweden, The Central Ethical Review Board, found that Lonnstedt and her supervisor had committed scientific dishonesty.

Again, it is noteworthy that the peer review process did not detect the issue of scientific dishonesty in this case.  

Resplandy et al, 2018

The case of Resplandy et al, 2018, also illustrates the unreliability of peer review. This paper was published in the prestigious journal ‘Nature’ in 2018. (Resplandy et al, Quantification of ocean heat uptake from changes in atmospheric O2 and CO2 composition).

Upon publication it soon became evident to certain readers that there was fundamental flaw in the analysis. The flaw multiplied the degree of uncertainty on the paper so much that, even after a correction had been made, the publishers eventually decided that the paper could not be allowed to stand and was retracted.

It is interesting that the first reader to raise the alarm was not a marine scientist, nor a climate scientist, nor a person with a Ph.D. Rather, he was a analyst in the finance industry and this shows that one should not be intimidated by a host of ‘experts’ who have peer reviewed a paper.

Retraction Watch

Retractions of peer reviewed are not rare and I invite you to visit the Retraction Watch website https://retractionwatch.com which commenced in 2010. At the start, the founders knew that retractions were happening on a regular basis but wondered if there would be enough to sustain a website. They thought they might have been able to identify around 80 cases in the first year but, in the event, they found over two hundred. 

The rate for Retraction Watch has continued unabated. As of January, 2020, the site has reported on 21,792 retractions. All of these had been peer reviewed prior to publication.

Conclusion

The belief in peer review as proof of scientific fact is false. The flip side of this belief – that the lack of peer review shows a paper is untrue – is also false.

Peer review is not a proof of anything and is not intended to be. It is vulnerable to fraud, hoaxes, spoofing and simple errors of maths. Peer review is not a replication of the original experiment or research.

NSW Bushfires 2019-2020

Submission by Dr. W.H. (Bill) Johnston

Terms of Reference for the inquiry were: (https://www.nsw.gov.au/nsw-government/projects-and-initiatives/make-submission-to-bushfire-inquiry/nsw-independent)

The Inquiry is to consider, and report to the Premier on, the following matters.

  1. The causes of, and factors contributing to, the frequency, intensity, timing and location of, bushfires in NSW in the 2019-20 bushfire season, including consideration of any role of weather, drought, climate change, fuel loads and human activity.
  2. The preparation and planning by agencies, government, other entities and the community for bushfires in NSW, including current laws, practices and strategies, and building standards and their application and effect.
  3. Responses to bushfires, particularly measures to control the spread of the fires and to protect life, property and the environment, including:
    • immediate management, including the issuing of public warnings
    • resourcing, coordination and deployment
    • equipment and communication systems.
  4. Any other matters that the inquiry deems appropriate in relation to bushfires.

Forty-four post-1910 daily rainfall datasets extending from Mallacoota (Vic.) to Yamba Pilot Station were summarised and examined; a select group of 10 from southeastern NSW and the Central Coast were analysed and from them, four or five were used to support the submission. 

A monthly water balance was used to identify long-term sequences of dry years. Drought sequences were also identified using stream discharge data for two unregulated streams in the Bega Valley. 

When efforts were made in 2013 to get hazard reduction action near our farm at Bemboka, contradictory sections of the NSW Rural Fires Act (1997) proved to be insurmountable. As the landscape continued to dry it was never a question of if but of when calamity would strike.

While the situation deteriorated and despite repeated warnings, the local Regional Advisory Committee and those in charge at Bushfire-HQ sat on their hands; paralysed by inaction. The Tathra fire in March 2018 was a wake-up call but no-body was awake. Local greenies blamed it on the climate, but it was failing electricity infrastructure. The rest is history … look over there; blame the Prime Minister …

From Gippsland to the North Coast of NSW and southern Queensland, irrespective of whether fires were deliberately lit or not, it can be fairly said the calamity of the so-called Black-summer bushfires resulted from a lack of appreciation of the emerging ‘big-picture’ threat; and of government policy and bureaucratic failures, not the climate.  

An important link – find out more

The page you have just read is the basic cover story for Dr. Johnston’s full paper. If you are stimulated to find out more, please link through to the full paper – a scientific Report in downloadable pdf format. This Report contains far more detail including photographs, diagrams, graphs and data and will make compelling reading for those truly interested in the issue.

Click here to download the full paper including photographs and tables of data used